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Abstract

This article develops and describes rigorous oil and gas project forecasting methods. First, it builds a theoretical foundation by
mapping megaproject performance literature to these projects. Second, it draws on heuristics and biases literature, using a ques-
tionnaire to demonstrate forecasting-related biases and principal-agent issues among industry project professionals. Third, it uses
methodically collected project performance data to demonstrate that overrun distributions are non-normal and fat-tailed.
Fourth, reference-class forecasting is demonstrated for cost and schedule uplifts. Finally, a predictive approach using machine
learning (ML) considers project-specific factors to forecast the most likely cost and schedule overruns in a project.
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Introduction

This work applies machine learning (ML) to megaproject fore-
casting to improve cost and time performance planning.
Megaprojects account for enormous investments, amounting
to a substantial portion of the world’s gross domestic product
(GDP) (Flyvbjerg, 2014) and their key performance metrics
are planned versus actual time, cost, and benefits. High cost
and time overruns and benefit shortfalls are pervasive and
chronic. Flyvbjerg (2014) estimates that only one in 1,000
megaprojects meets all three targets. Flyvbjerg et al. (2003)
studied 258 global projects amounting to about US$90 billion
and found an average 28% cost overrun; 9 out of 10 transporta-
tion projects were affected. Significant overruns plague infra-
structure megaprojects (Flyvbjerg et al., 2018), big dams
(Ansar, Flyvbjerg & Budzier, 2014), and big IT projects
(Flyvbjerg & Budzier, 2011).

The primary goal of our study was to verify if ML can lead to
better forecasting. Accurate cost and schedule estimations are
challenged by complexity, principal-agent issues, and behavio-
ral biases. We first investigated if these issues, which result in
underestimated schedules and budgets, are present in industrial
megaprojects. Having verified this, we verified if ML can be
applied to effectively predict corrective project-specific cost
and schedule uplifts using project features underlying
misestimation.

Our work will contribute to the incipient body of knowledge
on ML application to projects. Complexity and limited datasets
make ML application to megaprojects challenging. Our ML
models address this by building on reference class forecasting
(RCF) methodology and predicting expected overruns from
identified project features. There are distinct viewpoints on heu-
ristics for decision-making under complexity with implications
on the place of ML: one sees them favorably and the other
emphasizes cognitive limitations. Along with their practical sig-
nificance, our results are significant to the balance between
expert judgment and ML. In our conclusion, we discuss how
to combine their strengths, which can guide ML applications
to projects beyond our specific application.

We begin by introducing the chosen case, offshore oil and
gas (O&G) projects. We build the theoretical framework,
based on which the research questions are formally stated as
hypotheses and research methods are derived. We build on
the theoretical grounding and demonstrate the presence of
bias in industrial megaproject forecasting using a questionnaire
sent to 26 O&G project managers, one-half each from O&G
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companies and offshore EPC contractors. This is an important
indicator of the potential and place of ML in advancing indus-
trial megaproject management, which is then demonstrated
through application. We methodically collected cost and sched-
ule data for a large sample of commissioned offshore O&G pro-
jects from public and secondary data. This dataset was used to
establish the extent of cost and schedule overruns in O&G off-
shore projects, demonstrate their fat-tailed non-normal distribu-
tion, and identify features that affect performance. The research
results are discussed at length, followed by the conclusion,
which summarizes our findings, discusses limitations, and iden-
tifies several interesting results for future research.

The Problem

Industrial megaprojects account for substantial and growing
investments (Merrow, 2011). O&G megaprojects are challeng-
ing industrial megaprojects with high upfront investments for
long-term returns in uncertain, complex socioeconomic-
technical environments (Raval, 2020), and a track record of
time, cost, and benefit underperformance (Merrow, 2012).
Project portfolio selection and execution efficiency are core
strategies for O&G companies (Singh, 2010), as for any
sector where revenue-generating assets are created through
megaprojects. Offshore project investment decisions amounted
to US$92 billion in 2019, peaking at US$217 billion in 2011
(Rystad Energy, 2020). Underperformance has wider conse-
quences. Cost overruns caused a 38% single-day tumble in an
offshore EPC contractor’s share price (Upstream, 2002).
Schedule overruns cause significant financial losses (Caron &
Ruggeri, 2016). In one project, severe overruns toppled both
the oil company’s board and the main contractor’s top manage-
ment (Upstream, 2000). Costs from a Norwegian project with
massive overruns were transferred to taxpayers via tax deduc-
tions and state investments.

Theoretical Framework

The theoretical foundation intersects several streams of project
performance research requiring extensive literature review.
Furthermore, it is at the confluence of megaprojects, statistics,
and ML, accentuating the transdisciplinary nature of manage-
ment and organization studies (Denyer & Tranfield, 2009).
Denicol et al. (2020) used a systematic literature review and fil-
tering process to explore the causes of and cures for poor mega-
project performance. The concepts they extracted were: (1)
decision-making behavior; (2) strategy, governance, procure-
ment; (3) risk and uncertainty; (4) leadership capability; (5)
stakeholder engagement/management; and (6) supply-chain
integration and coordination. As they discussed, currently, no
overarching theory unites them. However, our systematic data
collection allowed us to map these concepts, representing the
body of megaproject research, to project performance. The
framework illustrated in Figure 1 relates these concepts to
factors we found to affect forecasting and overruns: decision-

making behavior during planning and emergence of unplanna-
ble outcomes with inadequate response during execution. These
concepts and factors, expatiated below, are systematically con-
nected to our research methods and subsequently to research
findings.

Complexity
Megaprojects are temporary organizations (Lundin &
Séderholm, 1995) characterized by uncertainty (Denicol

et al., 2020) and complexity (Baccarini, 1996). They display
the hierarchy, inter-connectedness, emergence, sensitivity to
initial conditions, and phase transition associated with complex-
ity. Complex systems can display emergent and chaotic behav-
ior (Hitchins, 2007). Emergent behavior is highly nonlinear,
state-dependent, challenging to forecast, and can change
rapidly (Warren, 2008). Chaotic behavior from high sensitivity
to initial conditions makes theoretically deterministic outcomes
practically unpredictable (Werndl, 2009). Chaotic behavior has
been related to cost overruns in offshore O&G projects due to
complex interactions and high exposure to change (Olaniran
et al., 2015). Complexity engendered positive feedback and
sudden phase change were observed in projects with extreme
overruns from our dataset. Sometimes this results in black
swans—high impact unpredictable events associated with com-
plexity and characterized by retrospective sensemaking (Taleb,
2008).

Extreme Values

While extreme, outliers are significant to statistical analysis of
overruns (Flyvbjerg et al., 2018). Flyvbjerg (2006) showed
how cost outrun distributions for several infrastructure project
classes were non-normal and significantly weighted toward
overrun, with fat tails containing significant outliers.
Similarly, Flyvbjerg and Budzier (2011) found that one-sixth
of 1,471 IT projects they studied were black swan fat-tail outli-
ers, with an average 200% cost and 70% schedule overrun.
Project classes displaying “regression to the tail” (Flyvbjerg,
2020, p. 2) are susceptible to ever-larger tail risks, signifying
outlier salience.

Randomness measures such as the normal distribution
cannot effectively describe systems incorporating bias-prone
human heuristics (Taleb, 2008). Power laws can describe fat-
tailed distributions containing black swans, as demonstrated
for IT project cost and schedule overrun distributions by
Budzier and Flyvbjerg (2013), evidentiary for similar generat-
ing mechanisms as the rest of the distribution. This implies
that black swan probability is similar in several more projects
than those few in which they manifest, making individual out-
liers unpredictable (Sornette, 2009). Some extreme outliers lie
beyond power laws, which Sornette (2009) calls dragon-kings,
relating them to high degrees of coupling that amplify emergent
outcomes, causing phase transition. The Thunderhorse offshore
platform from our dataset exemplifies this. The interaction
between a single valve installed backward—a small design
error in the hydraulic system—and a hurricane just before
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delivery almost sank it, resulting in catastrophic cost and sched-
ule overruns (Wright, 2009).

Responsiveness

Control-based approaches are inadequate for complex, inter-
connected projects (Remington & Pollack, 2008). Ackoff
(1981, p. 22) saw complex situations as “messes,” limiting def-
inite solutions. Emergent changes and black swans require flex-
ibility and responsiveness. Complex projects are often
characterized as complex adaptive systems (CAS) (Whyte,
2016).

Heuristics and Biases

Megaprojects are complex systems characterized by uncertain,
contested information from several directions (Bruijn &
Leijten, 2007). Heuristics can be effective and necessary for
forecasting in such environments (Gigerenzer & Brighton,
2011). However, human rationality is limited by cognitive con-
straints, available information, and time (Simon, 1956),
famously labeled bounded rationality by Herbert Simon.
Furthermore, Kahneman and Tversky (1979) demonstrated
how inside view forecasting using heuristics can be subjective
and biased (Kahneman, 2012). This caused paradigm shifts in
several fields, including megaproject management (Flyvbjerg
et al., 2018) and was rigorously replicated by an international
team of researchers recently (Ruggeri et al., 2020). We interpret

Human
cognition

Principal-
agent
issues

Bounds
on human
rationality

Available
information

Temporality

Figure 2. Bounded rationality in complex projects.

bounded rationality in the context of complex megaprojects in
Figure 2.

Human forecasting exhibits inconsistencies and inadequate
consideration of predictability or prior probability (Tversky &
Kahneman, 1974). Interpretation of distributional information
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Figure 3. Front-end approach to FID (based on Merrow, 2011, p. 24) and performance deviation measurement.

is prone to biases such as affirmation bias, hindsight bias, and
the narrative fallacy of fitting events into simplified, incorrect
narratives (Kahneman, 2012). Optimism bias in project fore-
casting was dubbed the “planning fallacy” and related to the
tendency to neglect distributional data by Kahneman and
Tversky (1979).

Megaprojects are interorganizational (Sydow & Braun,
2018) temporary meta-organizations of contractually related
independent firms with misaligned incentives, asymmetric
accountability, and power (Clegg et al., 2017; Lundrigan
et al.,, 2015), challenged by stakeholder conflicts (Locatelli
et al., 2014). EPC project complexity is managed by decompo-
sition into subprojects delivered by specialist contractors,
making interfaces critical (Davies & Mackenzie, 2014).
Typically, O&G companies use EPC contractors to deliver off-
shore projects using specialist subcontractors (Lee, 2019).
Principal-agent conflict across contractual networks is a key
project governance problem (Miiller, 2009).

Principal-agent issues, optimism, and behavioral biases often
result in significant “inside view” underestimations (Flyvbjerg
et al., 2018). The causes have been related to “deception” or “stra-
tegic misrepresentation” due to misaligned incentives and “delu-
sion” from cognitive biases (Flyvbjerg et al., 2009). Inadequate
accountability and risk-sharing mechanisms incentivize cost
underestimation and benefit exaggeration (Flyvbjerg, 2014).

Forecasting

Complex projects require decomposition and definition for
stability (Remington & Pollack, 2008). O&G projects typically
follow a phase-gate approach; a front-end process develops

budget and schedule baselines before project approval at final
investment decision (FID). A three-stage process (see
Figure 3), where estimates are progressively elaborated, is dis-
cussed in Merrow (2011) and was present in several projects we
investigated. Cost and time overrun measurements require con-
sistent baselines (Flyvbjerg et al., 2018). In our study, the FID
budget and schedule define the “budget at the time of decision
to build” discussed by Flyvbjerg et al. (2018, p. 175). Overruns
are measured between this baseline and actual cost and time at
delivery. Scope changes that materially affected projects were
baselined to the FID budget and schedule.

Overrun risk is a key FID input. Probability quantifies uncer-
tainty (Goodfellow et al., 2016). Hubbard (2009) defines “strict
uncertainty” as possible outcomes with unknown probabilities
and risk as the probability of undesirable outcomes. While com-
plexity engendered unknowns limit forecastability, forecasting
reduces risk and improves with distributional data. Lovallo
and Kahneman’s (2003) “outside view” approach to planning
was adapted as RCF by using past project distributions to
correct biased inside view forecasts for acceptable risk.
Batselier and Vanhoucke (2016) demonstrated that RCF outper-
formed earned value management (EVM) and Monte Carlo
simulation for both time and cost forecasting.

Machine Learning

Machine learning (ML) has revolutionized forecasting in
several fields. Data-driven project planning using ML is a key
recommendation in the Ernst & Young (EY) report on O&G
megaprojects (Emst & Young [EY], 2015). ML models learn
by identifying and extracting patterns from data rather than
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having knowledge built into them (Goodfellow et al., 2016). A
formal definition of ML from Mitchell (1997, p. 2) says: “A
computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P,
if its performance at tasks in T, as measured by P, improves
with experience E.”

In our case, experience E is represented by the reference class
distributional data, tasks T are cost and schedule uplift prediction,
and the performance P is measured by deviation from actual out-
comes. A trained ML model can predict project-specific uplifts
from features indicative of biases, emergence, and response by
learning correlations using project overrun distributions. This is
fundamentally a realist approach to integrate inside view project
information with the outside view using past project data.
However, megaprojects are susceptible to high-impact emergence
from complexity and length, and the “curse of dimensionality,”
(Bellman, 2013, p. xxi) a phrase describing the rapid growth in
problem difficulty with increasing features. There are a multitude
of features with complex interrelationships that affect perfor-
mance. Their limited number limits datasets. These factors make
ML megaproject forecasting extremely challenging.

Research Hypotheses/Questions

In this section we develop the research hypotheses, which are
summarized in Figure 4 at the end of the section. RCF improves
forecasting accuracy by correcting underestimated forecasts
using empirical benchmarking distributions from similar pro-
jects that constitute the reference class. However, industrial
megaprojects, including O&G projects, are usually privately
or market funded (Merrow, 2011) and managed by industry

professionals. Merrow (2011) discusses how their tangible,
measurable goals and profit motives result in incentivization
structures that differ from public infrastructure projects,
making them less prone to optimism bias and principal-agent
issues. This leads to our first two hypotheses:

Hypothesis 1: Biases, such as optimism and availability biases,
are present in heuristics used by offshore industry project man-
agers during forecasting.

Hypothesis 2: Principal-agent misalignment affects offshore
project cost and schedule forecasting.

RCF is predicated on the track record of a class of projects
showing statistically significant overruns, thus we hypothesize:

Hypothesis 3: Asymptotic distributions of cost and schedule
performance outcomes are fat-tailed, non-normal distributions
significantly skewed to overruns.

If both cost and schedule distributions show significant over-
runs, it is desirable to obtain both uplifts. However, if they are
not sufficiently covariant, conventional RCF uplifts for both
can be overly conservative. A project may have a higher pro-
pensity to cost or schedule overrun, affecting the uplift chosen
for each.

RCF uses the entire reference class outcome distribution
as a probability distribution applicable to any project in that
class. However, O&G project performance has shown corre-
lations with factors such as location, front-end detail, and
novelty (Merrow, 2012; Rui et al., 2017). Therefore, the

Hypothesis 1:
Biases (optimisim, availability biases,

etc.) are present in heuristics used by
project managers for forecasting.

Hypothesis 2:

Principal-agent misalignment is
present at key project forecasting
milestones.

Front-end

processes

Yes
Yes
s v )
Hypothesis 3: Hypothesis 4:
Asymptotic distributions of ML models that use project
cost and schedule Yes features for more accurate
performance are fat-tailed, forecasts of cost and schedule
non-normal distributions, overrun uplifts can be obtained
skewed to overruns. using distributional data.
Project execution

performance issues

Figure 4. Conceptually linked hypotheses.
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ability to identify and use such factors for more accurate
project-specific forecasts is of interest. However, factor
influences can be modified by other factors in complex
ways. For instance, a detailed front-end, which has been
correlated with better performance, is characteristic of inter-
national O&G companies (IOC), which conversely under-
take more challenging projects(Merrow, 2011). Therefore
ML, which outputs a model by learning from features and
distributions, offers more potential than deterministic fore-
casting for complex projects, thus we hypothesize:

Hypothesis 4: Generalized ML models can effectively forecast
project-specific uplifts for both cost and schedule, using project
features by learning from distributional data that are more accu-
rate than conventional RCF.

Research Methods and Data Collection

Research Design

An offshore project is a temporary complex system for creating
a complex system whose starting conditions are affected by

cognitive biases and principal-agent issues; this limits episte-
mological questions of finding a definite schedule or budget.
Ecological rationality refers to decision-making effectiveness,
when bounded rationality is adapted to its environment (Todd
& Gigerenzer, 2012). Our goal is to develop effective forecast-
ing methods in the industry context while bound by complexity,
available data, and analysis abilities. Distinct research and data
collection methods, illustrated in Figure 5, were used for the
hypotheses on biases and misalignment on one hand, and
hypotheses on project performance on the other. The two
hypotheses concerning biases and misalignment were validated
using questionnaires, and the two hypotheses on project perfor-
mance and its prediction were validated from our project dataset
and ML model performance.

Research Methods

Decision-Making Biases

A formal judgment elicitation approach using questionnaires
answered by experienced offshore project managers validated
our hypotheses that heuristic and principal-agent biases chal-
lenge offshore project forecasting. The six-step process, based
on methodologies for eliciting subjective expert judgment

.........................................
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from Walls and Quigley (2001) and Garthwaite et al. (2005)
included: preparation, recruitment, briefing, structuring, elicita-
tion, and statistical assessment. The Jisc online survey tool,
designed for academic research, was used to prepare the ques-
tionnaire, to obtain insights into:

1. Behavioral factors in heuristics-based judgment among
project professionals;

2. Differences in expectations and perceptions across con-
tractual boundaries; and

3. Perceived factors that affect project performance; heuris-
tics that have evolved to be ecologically rational in the
offshore industry.

Likert scales were used to numerically rank features by their
impact on a question. No two features on a scale could have
the same rank, and every feature had to be ranked. Thus, the
largest rank corresponded to the number of features for that
question. Questions to assess subjective probability estimation
used percentages instead and were more akin to ratio scales.
These are explained further in the analysis sections in context.

Project Performance

Our project performance data collection followed a different
approach when compared to the one used for evidence of
decision-making biases. It used public and secondary data.
Methods for obtaining O&G project data have included pre-
collected data from organizations as reported by Merrow
(2012) and public and secondary data as reported by Rui
et al. (2017) and EY (2014). Our project dataset included
project features, FID cost/schedule baselines, and actual cost/
schedule performance and was meticulously collected from:

e Annual reports and regulatory filings of O&G companies
and contractors;

e Regulatory and government reports, for example,
Norwegian Petroleum Directorate, US BOEM,;

e Company press releases, Factiva;

e Business information aggregators, such as Capital IQ; and

e Secondary data from reputed industry publications, for
example, Upstream, Oil & Gas Journal.

The FID and installation dates, which involve regulatory
approvals and are significant to shareholders, were readily
available. Budget and especially cost overrun information
required considerable investigation. Discrepancies found in
business information sources and secondary data by cross-
checking were corrected using corroboratory data or discarded.
Information was collated chronologically for each project; the
assembled information totaled approximately 400 pages.

Project features affecting performance and forecasting accu-
racy were identified from:

e Pertinent O&G project performance literature, for
example, Merrow (2011 & 2012), EY (2014), Rui et al.
(2017), and Steen et al. (2017);

e Cross-case and within-case analysis of our project dataset;

e Theory mapping; and

e Questionnaire feedback.

Features discussed in the literature include front-end develop-
ment, location, contract management, size, novelty, and
company type. Identified features were collected for sampled
projects and mapped to our theoretical framework.

RCF and ML application followed the three-step approach
described by Flyvbjerg (2006). Offshore projects comprise
several categories: fixed or floating production platforms, drill-
ing, or subsea pipelines. Our work emphasized complexity,
scope, and measurable FID and delivery milestones. Integrated
field development projects with floating platforms fit these crite-
ria well and became our reference class (step 1). Performance
measurement was for the aggregate project, as the platform
and subsea components are highly interrelated with critical inter-
faces. O&G companies or their joint ventures (JVs), are referred
to as “clients” and primary contractors as ‘“‘contractors.”
Performance data and features collected from delivered offshore
projects enabled RCF application and training of ML models.
Overrun distributions were characterized, probability distribu-
tions were established (step 2), and required uplifts were calcu-
lated (step 3). Following this, ML models were selected, tested,
and deployed for overrun prediction. These three steps are illus-
trated in Figure 6. The selection of industry-specific features and
their weighting to project outcomes make this resemble the
robust heuristics with environmental correspondence as dis-
cussed by Todd and Gigerenzer (2000).

Data Collection

Questionnaire

Offshore O&G projects rely on expert judgment (Gyasi,
2017). Our questionnaire respondents were 26 individually
recruited O&G project professionals, evenly divided between
clients and contractors, 25 of whom were currently in offshore
projects. This is a good size for expert judgment elicitation in
0&G projects from qualitative and quantitative perspectives
(Gyasi, 2017).

Respondents were briefed and advised to apply judgment and
not refer to data. They represented 624 years of experience,
ranging from 10 to 40 years as shown in Table 1. Several had engi-
neering backgrounds and were well acquainted with the quantita-
tive expression of project forecasts. One each from the contractor
and client was picked for resembling what Flyvbjerg calls “master
builders” (MacNicol, 2016), possessing consistent track records of
successful offshore project delivery. The contractor representative
had successfully delivered and rescued several challenging pro-
jects; the client representative had delivered a complex project in
West Africa on time and on budget.
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Projects

Data collection started with project identification and cross-
referencing using industry sources such as the Energy Maritime
Associates Floater Systems Report (EMA, 2020) and the 2019
Worldwide FPSO Survey (Offshore Magazine, 2019).
Approximately 500 projects were found with installation dates
from 1990 onward. Subsea tiebacks, where a subsea field is con-
nected to existing platforms, and major upgrades or redeployment
of existing platforms were filtered out, leaving 358 projects repre-
senting the global population as shown in Table 2. Offshore plat-
forms were often on the critical path and constituted significant
portions of aggregate project costs. Schedule overrun information
was obtained for 130 projects (~36% of population), of which cost
overrun information was obtained for 106 (~30% of population).
Our samples represented the population’s geographical spread (p
=.71 and .68). Assessments and predictions involving cost or

Table I. Questionnaire Respondents

Total Client Contractor
Sample Size 26 13 13
Experience Sum (years) 624 317 307
Average (years) 2400 24.38 23.62
p value, two-sample 8
t test
Number of Average 11.27 1046 12.08
projects p value, two-sample .6
t test

both cost and schedule used the sample of 106; those involving
only schedule used 130 projects.

Access to data on O&G megaproject performance used in
EY (2014) was obtained toward the end of our research;
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Table 2 Project Dataset

Population Cost Sample Schedule Sample
Region Number Percentage Number Percentage Number Percentage
Africa 66 18% 24 23% 27 21%
Southeast Asia 68 19% 10 9% 10 8%
Gulf of Mexico 57 16% 26 25% 28 22%
Australia 12 3% 6 6% 6 5%
Canada 2 1% 2 2% 2 2%
Brazil 66 18% 14 13% 32 25%
North Sea 45 13% 21 20% 21 16%
China 18 5% 3 3% 4 3%
Mediterranean 8 2%
South America 4 1%
Middle East 12 3%
Total 358 106 130

discussions on data collection with the EY research team were
helpful. Offshore projects were only part of their sample. The
few projects that fit our filtering criteria were cross-checked
against our data on those projects and helped validate the
robustness of our data collection.

Projects were coded as a design matrix conceptually
described in Goodfellow et al. (2016). Each row corresponded
to a different project and each column to a project feature.
Eighteen features related to project performance and known at
FID were collected for each project (see Table 3). Features
such as size, novelty, lessons learned, and front-end detail
were ranked along a five-point scale using qualitative informa-
tion and quantitative inputs from within-case analysis. Features
such as company type (International [IOC] or National Oil
Company [NOC]), contract types, region, and so forth, were
categorical data converted to dummy variables for ML algo-
rithms. The average planned FID budget was US$2.3 billion,
the median was US$1.3 billion, and the total was US$244

Table 3. Project Features for ML

Features Measure
Region Categorical
Company Categorical
Lease/Own Categorical
Contract_type Categorical
Contract_risk_allocation Categorical
Unit_Type Categorical
Conv/New Categorical
Contracting_Date Date
Planned_Duration days
Planned_Cost billion USD
BOE/day BOE/day

5-point scale
5-point scale
5-point scale
5-point scale

Local_Content_Requirement
Topsides_size
Technology_Novelty
Lessons_Learned

FEED-Detail 5-point scale
Water-Depth meters
Oil/Gas_Prod Ratio

billion for 106 projects (not adjusted for inflation). The
average actual cost was US$3.1 billion. Some projects were
below the threshold of US$1 billion, which is often associated
with megaprojects (Merrow, 2011). The average planned dura-
tion was 3.2 years, median was three years, and average actual
duration was about four years for 130 projects.

Research Findings and Discussion

Data Analysis and Discussion—Questionnaire
on Decision-Making Biases

Industry project managers were asked to estimate the proportion of
projects facing cost and schedule overruns and also to estimate
those overruns. These expert estimates were for understanding
heuristics in forecasting helped by comparison with actual perfor-
mance from our dataset, not for project data. Respondents were
asked to rank project features to understand underperformance
and outlier causation attribution. Rankings also provided insights
into differing perceptions between clients and contractors indica-
tive of principal-agent issues. Two-tailed, two sample #-tests
were used to compare and discover differences between rankings
by client and contractor groups. Paired r-tests were used to
compare feature rankings within a scale to discover their perceived
significance. Statistical significance levels were .05 or less. The
results clearly showed errors from optimism, availability and rep-
resentativeness biases, conjunction fallacies, and principal-agent
issues in heuristics used by industry experts, validating
Hypothesis 1 and Hypothesis 2. Project feature rankings displayed
high standard deviations, correlated mostly to principal-agent
boundaries, but also to experience. These results also provided
feedback on project feature selection.

Perceived Budget and Schedule Overruns

Respondents were asked to recollect the proportion of their
projects that were on budget and on schedule. The low estimate
of ~50% (see Table 4) across contractual boundaries can be
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Table 4. Recollected Proportions of Projects with Budget and
Schedule Overruns

Percentage of Your Projects that

you Believe to Have Been Total Client  Contractor

On budget Mean 48% 49% 48%
SD 24% 23% 26%
Median 45% 45% 35%
SE .93% 1.79% 2.00%
p value_two-sample .94

On schedule  Mean 51% 48% 53%
SD 27% 28% 27%
Median 50% 45% 55%
SE 1.03%  2.14% 2.06%
p value_two-sample .62

related to low predictability assessments by experts in their
field. This test is recommended by Kahneman and Tversky
(1979) for the applicability of reference class corrections. The
high underperformance estimate, coming from project profes-
sionals, is indicative of principal-agent issues. Furthermore,
this high estimate is still less than that from our data (18% on
schedule, 20% on budget, 31% within 5% of schedule, 28%
within 5% of budget), indicating optimism bias along with
principal-agent issues. There was no significant difference
between client and contractor perceptions; however, the con-
tractor estimated budget overrun was bimodal, possibly from
availability bias reflecting the most recent project.
Respondents were also asked to estimate the actual overruns
(see Table 5). Their estimates were similar but significantly less
than the average cost overrun of +33% (n=106) and average
schedule overrun of +26% (n=130) from our dataset.

Optimism Bias and Heuristics

Participants were asked to estimate typical industry project
performance in two different ways. The first used a ratio
scale, Scale 1, with equidistant percentage measures. Given

Table 5. Recollected Estimates of Budget and Schedule Overruns

Estimated Average Overrun
by Respondents in their

Projects Total Client Contractor

Cost overrun Mean 17% 19% 15%
sD A3 Nh 15
Median 15% 25% 15%
SE .50% .86% 1.14%
p value_ 46

two-sample

Schedule overrun Mean 20% 20% 20%
sb 16 A7 16
Median 15% 15% 15%
SE .63% 1.31% 1.24%
p value_ .95

two-sample

Scale 1 Scale 2

0%-10% Virtually certain (99.9999%)

11%-20% Extremely probable (99%)
21%-30% Very probable (95%)
31%-40% Probable (80%)
41%-50% Slightly probable (60%)
51%-60% Even odds (50%)
61%-70% Slightly improbable (40%)
71%-80% Improbable (20%)
81%-90% Very improbable (5%)
91%-100% Extremely improbable (1%)

Virtually impossible (0.0001%)

Figure 7. Same questions, different scales.

the limitations to objective probability estimation in humans,
a more relatable nonlinear canon of probabilities for judgment
elicitation, found in a work on the application of Bayes
theorem to historical questions (Carrier, 2012), was used as
Scale 2 for the second means of elicitation. The two scales
are illustrated in Figure 7.

Estimates of industry project performance using Scale 1, as
shown in Table 6, were only marginally different from partici-
pant projects, but were significantly different using Scale 2: (p
=.0033 [cost]; .0043 [schedule]). Performance estimates using
Scale 2 were much closer to the data: (27% vs. 20% [cost]; 29%
vs. 18% [schedule]).

The significant number of actual underperforming projects
versus estimations is evidentiary for forecasting bias. The
much better performance of Scale 2 indicates the need for
more relatable measures for judgment elicitation to avoid
bias, even from experts.

Table 6. Likelihood Estimations for Project Performing to FID
Baselines

Typical Industry Project

Respondent’s

Own Projects Scale | Scale 2

On On On On On On

budget schedule budget schedule budget schedule
Mean 48% 51% 50% 55% 27% 29%
SD 24% 27% 24 .25 .26 25
p value: Own versus .82 .52 .0033 .0043

industry project
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Conjunction Fallacy

Tversky and Kahneman’s (1983, p. 293) famous paper
on the conjunction fallacy in probability judgment observes
that “the probability of a conjunction, P(A&B), cannot
exceed the probabilities of its constituents, P(A) and P(B),”
is perhaps the “simplest and most basic quantitative law of
probability.”

To test for this fallacy, respondents were asked to rank the
likelihood of an offshore project suffering from cost OR sched-
ule overruns using Scale 2. The mean result was 78%, corre-
sponding to a likelihood of meeting both targets of 22% for
P(A&B), only marginally less than their estimates for cost,
P(A) = 27%), and schedule, P(B) = 29%. The percentage of
projects from our dataset that actually met both cost and time
targets is only 4%, which is considerably less than the percent-
age meeting each performance target. This is indicative of the
conjunction fallacy.

Availability Bias

Availability bias—where the probability assigned to an
event is biased by the ease of recall of similar instances—was
tested by asking participants to choose a 0%—100% probability
for an unforeseen event, such as a global pandemic or a cata-
strophic economic downturn to affect an offshore project mate-
rially. This evoked the COVID-19 pandemic, which had caused
a severe crisis in the O&G industry at the time of the research.

The mean probability of 42% was much higher than
expected and double the mean estimates for outliers caused
by external events in a separate question to the same respond-
ents. Projects from our sample showing evidence of being mate-
rially affected by such events were less than 10%. This is strong
evidence for availability bias. Interestingly, the client and con-
tractor “master builders” assigned 20% and 10% probabilities,
respectively, considerably less than the mean assignments of
40% and 50%, respectively, in their groups.

Representativeness Bias

We replicated Tversky and Kahneman’s (1983) famous test
of the proposition that coupling an outcome with a cause would
make it appear more probable than the outcome on its own,
whereas the opposite is true. Respondents were asked to
assess the probabilities of two events:

1. Cost overrun of more than 40% in a project offshore
Southeast Asia.

2. Regulatory and local content issues causing cost overrun
of more than 40% in a project offshore West Africa.

The mean estimate for the conjunction overrun due to regula-
tory and local content issues in West Africa, was higher at
47% versus 35% for the Southeast Asia project. Average cost
overruns in Southeast Asia (26%) and Africa (24%) from our
sample are very similar. Local content issues are significant in

Table 7. Cost and Schedule Performance Factors

Average  SD SE

JV partner management 4.46 256 .10
Overoptimistic FID forecasts 6.15 3.18 .62
Market and geopolitical 6.12 3.05 .60
Local content requirements 7.00 290 .57
Project cost and size 5.50 334 .65
Geographical location 7.00 3.21 .63
Contract issues 5.27 285 .56
Technology novelty 5.88 249 49
Insufficient front-end 473 339 .66
Own over lease 7.04 375 .73
Prescriptive over functional requirements 6.92 3.02 .59

both regions, which form strong evidence for representativeness
bias.

Interestingly, the two master builders stood out for correctly
ranking the probability of the overrun in Southeast Asia signifi-
cantly higher than the estimate for the conjunction: 45% versus
15% (client) and 25% versus 5% (contractor).

Perceived Factors Affecting Cost and Schedule Performance

Respondents were asked to rank factors by importance for
meeting cost and schedule FID baselines as shown in Table 7.

No factor stood out, and responses had high variance. JV
management issues and insufficient front-end detail, correlated
with project underperformance in some studies, were ranked
least significant (p <.05). These issues made it challenging to
filter project features wusing corroboration from the
questionnaire.

Contractors gave significantly more causality to contractual
issues (p =.013) and high but not statistically significant causal-
ity to overoptimistic forecasts at FID (p =.063). Both are indic-
ative of principal-agent issues.

Outlier Causation Perceptions

Budzier and Flyvbjerg (2013) studied the impact of outliers
in project management and discussed three schools of thought
to explain them. The system-centric view focuses on project
complexity, the event-centric view focuses on external events
coupled with ineffective response, and the process-centric
view focuses on the buildup of issues over long periods.
Features identified from our theoretical framework and project
case analyses were mapped across these views. Respondents
were asked to judge which features contributed most to cost
overruns greater than 50% (see Table 8).

The normalized attribution was: 53% (system-centric): 20%
(event-centric): and 27% (process-centric). Clients ranked local
content requirements significantly higher (mean-ranking: 8.15
vs. 5.08, p=.011), as well as prescriptive requirements (mean-
ranking: 7.08 vs. 4.58, p=.043), even though prescriptive
requirements typically ensue from their organizations, pointing
to principal-agent issues within sponsoring companies.
Contractors ranked overoptimistic FID forecasts more
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Table 8. Factors Contributing to Severe Cost Overruns

A project shows a cost overrun > 50% from
FID. Rank these factors by how they have may

have contributed. Average SD  SE

System-centric  Own over lease 632 379 76
Prescriptive over functional 5.88 323 .65
requirements
Insufficient front-end 548 342 .68
JV management 512 296 .59
Overoptimistic FID forecasts ~ 6.20 3.50 .70
Technological novelty 6.16 259 .52
Event-centric Location 6.60 290 .58
Market and geopolitical 652 343 .69
issues
Process-centric  Local content requirements 6.68 320 .64
Project cost and size 544 299 .60
Contract issues 5.36 3.16 .63

significantly (average: 7.67 vs. 4.85, p=.034), indicating
principal-agent issues.

A follow-up question elicited responses coded to the three
views to check consistency, with one cause corresponding to
each (Table 9). It was also designed to understand internal con-
sistency; a percentage representing the probability of causation
was used and, by implication, the sum of probabilities had to be
100%.

The elicited probabilities at 152% totaled more than 100%,
pointing to the “Conjunction Fallacy.” The normalized attribu-
tion was: 47% (process-centric): 21% (event-centric): 32%
(system-centric), reversing the previous attributions, pointing
to inaccurate quantitative estimations.

Overrun Causation Perceptions Across Contractual
Boundaries

Two scales asked respondents to rank overrun causation
factors from client and contractor perspectives to highlight the
attribution differences between client and contractor partici-
pants and corroborate feature selection for our prediction
models. While neither scale showed statistically significant

Table 9. Factors Contributing to Severe Cost and Schedule
Overruns

An offshore floater project is running into cost overruns and schedule
challenges from FID benchmarks. The probability of causation is:

Unexpected

outside event:
Unforeseen issues economic, Inadequate
from geo-political, front-end rigor/
project-complexity ~ pandemic, etc.  time

(system-centric) (event-centric)  (process-centric)

Average 49% 32% 71%
SD 25% 22% 21%
SE .94% .85% .82%

deviations between client and contractor responses, there were
several pointers to principal-agent issues: Contractors saw the
pressure to show reduced cost and schedule as much higher
than clients (average: 5 vs. 3.7, p=.17); clients ranked
improper subcontractor work not discovered in time higher
(average: 4.46 vs. 3.5, p=.137).

The extensive biases and principal-agent misalignment in the
questionnaire responses by industry project management practi-
tioners validate Hypothesis 1 and Hypothesis 2.

Data Analysis and Discussion—Project
Performance and Forecasting

Analysis of offshore project cost and schedule performance out-
comes found that their asymptotic distributions were fat-tailed
with black swans and catastrophic dragon-king outliers, validat-
ing Hypothesis 3. Both cost and schedule distributions show
significant overruns. We demonstrate the ability of clustering
to identify black swans and dragon kings and the application
of RCF to offshore project uplifts. We then demonstrate ML
models for accurate project-specific overrun forecasting, vali-
dating Hypothesis 4.

Cost and schedule performance for offshore O&G projects
in our sample are shown in Table 10; average cost overrun is
+32.8%, schedule overrun is +25.6%, 82% of 130 projects
were late, and 80% of 106 projects were over budget. This
is comparable with Merrow’s (2011) study, which looked at
318 industrial megaprojects, including 130 O&G projects,
of which 78% showed cost overruns of +33% and schedule
slippage of 30%. EY (2014) reported an average +23% cost
overruns for O&G upstream and downstream megaprojects,
with 64% of 205 projects facing cost overruns and 73% of
242 projects reporting delays. This performance compares
favorably with average cost overruns of +107.2% and sched-
ule overruns of +37.3% reported for large IT projects by
Budzier and Flyvbjerg (2013). However, cost overruns in
our dataset amounted to about US$83 billion, and schedule
slippage had severe cost implications, indicating the issue’s
seriousness.

We identified outlier projects using the conventional defini-
tion of 1.5 inter-quartile ranges from the IQR boxes (Figure 8),
similar to Budzier and Flyvbjerg (2013). This resulted in three
schedule overrun outliers (2.3% of sample) and six cost overrun
outliers (5.7% of sample). Case analysis revealed nothing mate-
rially unique about fat-tail outlier projects, keeping with
Budzier and Flyvbjerg’s (2013) findings for IT projects.

Table 10. Project Outcomes

Mean Median IQR n
Cost overrun +32.8% +20% 43 106
Schedule overrun +25.6% +20.2% 35 130
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Figure 8. Box plots of overrun data.

Overrun Distribution

Outlier presence and discrepancies between mean and
median indicate skewness and fat-tailed distributions (Budzier
& Flyvbjerg, 2013). Cost and schedule overrun histograms
show fat-tailed non-normal distributions (Figure 9), similar to
0&G project cost overruns reported in EY (2014) and Rui
et al. (2017). Dragon kings are visible as “obvious bumps in
the tail” (Sornette, 2009, p. 5). The schedule, budget, and asso-
ciated overrun curves in Figure 10 used kernel density estima-
tion (KDE), a non-parametric method to estimate probability
density functions (PDF). Only the planned duration is near
normal. Cost overrun, which has more outliers and a greater dif-
ference between the median and mean, is more fat-tailed. The

Kolmogorov-Smirnov (KS) test, a nonparametric test used to
test the goodness of fit between probability distributions, was
used on the cost and schedule overrun distributions. There
was no significant difference (p =.18).

Maximum likelihood estimation was used to fit PDFs to
overrun distributions. Normal distributions did not fit the sched-
ule (p=.049) or cost overrun (p=.0002). Exponential,
Birnbaum-Saunders (BS), and Pareto distributions were fit to
both overruns (Figure 11). The KS test was used to test the
null hypothesis that they fit the data (p>.05). The
Birnbaum-Saunders two-parameter family of extreme-value
distributions, used to model structural fatigue and reliability
related failures (Birnbaum & Saunders, 1968), provided the
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Figure 9. Schedule and cost overrun histograms.
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Figure 10. Cost and schedule overruns and corresponding budget and schedule at FID.

best fit to both schedule (p =.89), and cost overruns (p =.14).
Sornette (2009) discusses how the coexistence of power-law
distributions with catastrophic dragon-king events can be
approximated by calibrating distributions that model material
failure, which incorporate positive feedback and phase transi-
tion. These results offer possibilities for approximating distribu-
tions for forecasting when actual distributions are limited.

Overrun distributions were generated using uniformly dis-
tributed pseudorandom numbers and the fitted BS distributions.
It was interesting to observe how increasing noise in the BS dis-
tribution produced bumps mimicking dragon-king outliers in
the tail. As random variables increased from 100 to 10,000,
the curve smoothened as it approached the asymptote. The
KS two-sample test, showed good fits for schedule (p =.085)
and cost (p =.25), as shown in Table 11 and Figure 12.

Cost and schedule overruns in offshore O&G projects are non-
normal, fat-tailed, and skewed toward overruns, validating
Hypothesis 3.

RCF Application

After establishing the reference class cost and schedule
overrun distributions probability distributions are estimated as
their cumulative distributions as shown in Figure 13. Cost
overrun is visibly more substantial than schedule overrun.

Functions relating the required uplift on the x-axis to accept-
able risk level percentiles on the y-axis for schedule and cost
(Figure 14) overruns were obtained from the probability distri-
butions, as demonstrated by Flyvbjerg (2006). Table 12 shows
P10, P25, P50, and P75 uplifts from these functions. The uplift
percentile choice should follow the desired risk acceptability, as
discussed at length by Flyvbjerg (2006).

Joint Distribution of Cost and Schedule Performance
K-means clustering was initially used to identify RCF sub-
classes in the sample. While the limited sample and population
sizes meant that further subdivision was not pursued, clustering
analysis yielded valuable information. Project outcomes were
located along the two dimensions of cost and schedule
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Figure 1. PDF fitting to cost and schedule overrun data.

overruns. Within-cluster sum of squares (WCSS) was used to number of clusters to identify the bend where the variability
measure variability within clusters and identify optimal tapered off (Figure 15). Three clusters offered the greatest sep-
cluster numbers. The WCSS score was plotted against the aration (Figure 16): the first region with 81 projects corresponds
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Table I 1. Statistical Parameters, Cost, and Schedule Outcome Generation

Cost-Overrun-Distribution ~ Cost-Overrun, Fitted-Curve  Schedule-Overrun- Distribution  Schedule-Overrun, Fitted-Curve

Mean 326 .258 24 .29
Variance 192 .089 .105 .16
Skew 2.53 1.475 1.9 2.56
Kurtosis 8.53 2.685 6.1 1.3
Schedule
1.75 N
BS distribution, n=100
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p= Schedule overrun
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Figure 12. Cost and schedule overrun distribution generation.

to where both overruns are clustered together; the other two eight, extreme outliers, including black swans and dragon
clusters divide projects into those showing high cost or schedule  kings, became distinguishable. These findings offer points of
overrun. Figure 17 shows how projects separate into distinct departure for the study of outlier occurrence, distribution, cau-
cost or schedule overrun clusters as overruns become more sation, and clustering for reference class subdivision beyond
extreme. As the number of clusters increases to five and this article’s scope.
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Data-Analytics/sML—Performance Prediction

Cost and Schedule Uplift Forecasting

The distinct populations of cost and outliers reveal limited
covariance between cost and schedule overruns. The
Wilcoxon signed-rank test, a nonparametric version of the
paired #-test, only narrowly failed to determine that cost and

schedule overruns were significantly different (p=.08). A
linear regression model fit to a joint distribution of schedule
overrun and cost overrun in Figure 18 displays high scatter
(PCC=.37, p<.01). Even the dense cluster of 81 projects iden-
tified by three-means clustering shows substantial scatter (PCC
=.25, p<.05). Similar uplift percentages for cost and schedule
will represent different risk percentiles for different projects,



18 Project Management Journal

Required Schedule Uplift

200%

150%

100% \

Required uplift

50%

0%

-50%

I I I I I I I I I I
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Acceptable chance of schedule overrun

Required Cost Uplift
300%

250%

200%

150%

Required uplift

100%

50%

0%

-50%

I I I 1 I I 1 I
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Acceptable chance of cost overrun

Figure 14. Required uplifts as functions of acceptable risk.
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Table 12. RCF Uplifts

making RCF application to both challenging. This was resolved

by using ML to forecast project-specific cost and schedule

Acceptable Risk Schedule Uplift Cost Uplift uplifts.
10% 72% 89%
gg:ﬁ’ ‘:’33’ ;?:f’ ML Cost/Schedule Uplift Forecasting
75% 1%, co Deep learning utilizes models that train from a dataset using
an optimization procedure and a cost function (Goodfellow
Elbow Method
30—\

WCSS

o\

o\
S\

LN\

6 8 10

Number of clusters

Figure 15. WCSS scores for clusters in cost-schedule distribution.
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Figure 20. ML model.

Table 13. Models

Four-Layer_model

Two-Layer_model

neurons/layer activation_function neurons/layer activation_function
26 reLU 26 reLU
17 tanh 52 tanh
39 reLU output-layer sigmoid
7 reLU
output-layer sigmoid
Both Models: Loss_function: MSE; Optimizer: Adam
et al., 2016). Our challenge was a limited dataset with several ~Table 14. MSE Comparison
features. The model had to relate project features known at All Data New Data RCF
FID to overruns at delivery. Pearson correlations between fea-
tures and overruns are plotted in Figure 19; some correlations, Schedule ~ Cost ~ Schedule  Cost Schedule  Cost
such as lessons learned and technology novelty, are clear. 83% 42% 6% 122%  93% 20.2%
However, the effects of some features could be moderated by
other features in complex ways and the model would have to
learn these relationships.
Two supervised learning models were trained, one each for Table 15. Forecasting Accuracy Comparison—Percentage of
. . .. Accurate Forecasts
schedule and cost overrun. Project data were vertically split
into features and outcomes (overruns) and split horizontally, ML RCF
85:15, into training and validation datasets. Models learned
relationships between features and overruns using training Schedule Cost
data. Validation data represented new data to test models for All New All New
generalization performance. Given the limited dataset, cross- Accuracy data data data data Schedule Cost
Vahdgtmn with 10-folds was used to assess generalization. so 87% 24% 57% 25% 14% 1%
Multilayer neural networks for deep-learning enable the learn- 10% 949% 40% 89% 43% 23% 24%
ing of complex COHCCptS from simpler bulldlng blocks. 15% 99% 59% 93% 53% 39% 41%
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Figure 22. Project-specific uplifts as functions of acceptable risk.

Sequential models implemented in Python using the Keras and  overrun uplifts as the baselines as illustrated in Figure 20.
TensorFlow 2.0 open-source ML libraries were used. Prediction  The four and two hidden-layer models, which yielded good per-
performance was compared to the P50 RCF schedule and cost  formance for cost/schedule uplift forecasting are described in
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Table 16. Expected Overruns for Dummy Projects

Project I 2 3 4 5
Water-depth (m) 2,000 100 800
Novelty Very high Very Medium
low
Lessons learned Very low Very
high
Topsides-size Very large Very
small
Planned duration 2,000 500 1,000
(days)
Company 10C NOC I0C
Location Australia  Brazil Africa Brazil
Predicted 40% 52% 53% A% 23%
schedule-uplift
Predicted cost-uplift 93% 95% 58% 4% 84%

Table 17. Required Uplifts for Acceptable Risk Percentiles—Dummy
Projects

Project I 2 3 4 5

Schedule P10 88% 94 94% 56% 75%
P25 67% 75% 76% 25% 44%
P50 40% 52% 53% 0% 23%
P75 29% 38% 39% 0% 9%

Cost P10 167% 170% 143% 60% 159%
P25 129% 132% 99% 28% 122%
P50 93% 95% 58% 1% 84%
P75 66% 72% 43% 0% 58%

Table 13. The mean squared error (MSE) is compared to con-
ventional RCF in Table 14, and forecasting accuracies are com-
pared in Table 15.

A four hidden-layer model, used to evaluate predictability
for these complex projects, performed excellently on trained
data: 99% of schedule and 93% of cost overrun forecasts
were within 15% accuracy. The MSE was .83% for schedule
and 4.2% for cost overrun; five to ten times better than conven-
tional RCF. While extreme outliers were unpredictable, Pearson
correlations between predicted and actual overruns were .96 for
schedule and .93 for cost (Figure 21).

The four hidden-layer model’s performance on validation
data not used in training was considerably lower due to over-
fitting. Generalization performance was improved signifi-
cantly by reducing layers and employing regularization
techniques, limiting the number of epochs and regularization
penalties on layers. A two hidden-layer model yielded the
best generalization performance, which was significantly
better than conventional RCF. Dimensionality reduction
using PCA made little difference. Generalization performance
was tested on all data by progressively splitting the data
~90:10 into training and validation datasets, such that over
10 iterations, all the projects were present in the validation
dataset as new data exactly once. Predictions for all projects

were collated and used to recompute MSE (see Table 14),
correlation, and accuracy (see Table 15), for new data. The
MSE, 6% for schedule and 12.2% for cost, Pearson correla-
tions for new data, .59 and .6, respectively (p<<.01), and
prediction accuracy are very good for this challenging fore-
casting problem. Generalization performance will improve
with better training data on more projects and further model
optimization.

The models faltered for extreme outliers as expected from
complexity theory, even though high overruns were predicted
for those projects. For significant non-outlier deviations,
factors absent in the model, such as leadership and unknown
emergent issues, were seen to materially affect project out-
comes. The excellent performance on training data projects is
testament to the prediction model’s trainability using distribu-
tional data. The comparatively inferior performance on new
data reflects ML megaproject forecasting limitations from com-
plexity and emergence; however, a significant portion of it is
related to data unavailability and inaccuracy.

Significant overrun predictions not evident in actual data can
indicate inaccurate or misleading reporting, or positive black
swans and significant influence of factors absent from the
model. A West African offshore project exemplified a positive
black swan; it performed atypically better at close to 10% below
the budget, saving more than US$1 billion from unexpectedly
excellent drilling performance. Subsurface geological condi-
tions are significant risks in offshore projects and, in this
case, emergence helped. Investigation of another West
African project, which reported atypically better performance,
revealed evidence of significant cost overruns not reflected in
the project but the contractor’s books. While this can show mis-
leadingly better results on some projects, having contractors
take disproportionate risk is untenable over the long term,
given the criticality of their expertise (Merrow, 2011).

A more practical generalization test was performed by predict-
ing outcomes for dummy FPSO projects weighted toward high,
medium, and low overruns, using features such as novelty,
lessons learned, and front-end detail. The model correctly pre-
dicted higher uplifts for riskier projects, as seen in Table 16.

Project-specific uplift distributions for acceptable risk per-
centiles were generated from the uplift predictions and refer-
ence class using a Bayesian approach. Posterior probabilities
were computed by assuming a 50% probability for the project-
specific predictions and taking the reference class distribution
as the prior. This yielded project-specific uplift curves
(Figure 22), from which percentile uplifts for acceptable risk
are shown in Table 17 for the dummy projects. Outlier risks
are incorporated into the curves. While it is impractical to
choose risk percentiles incorporating outliers for individual pro-
jects, it can be done for long-term portfolios. Novelty, scale, and
front-end details can be revisited to reduce risk.

Hypothesis 4 is validated by realizing generalized models for
separate cost and schedule forecasts that use individual project
features for effective project-specific uplifts.
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Conclusion

In this article, we showed that biases, such as optimism, repre-
sentativeness and availability biases, and principal-agent issues
affect O&G offshore project forecasting. Experts displayed sig-
nificant underestimation of overruns but also significant aware-
ness of them. Projects showed budget and schedule growth after
every front-end approval stage, indicating principal-agent
issues between and within companies. Responses from the
master builders indicate better forecasting performance from
some experts. However, these experts still showed bias, and
the co-occurrence of the requisite extensive experience and pre-
disposition to obtain such skill cannot be a reliable basis for
megaproject planning.

The limitations of heuristics versus the effectiveness of
expert intuition are related to the environment’s predictability,
as discussed by Kahneman and Klein (2009). From in-case
and cross-case reviews of our projects, we postulate that
expert intuition plays a greater role in response to post-FID
execution-phase emergent issues and crises, something to be
substantiated in future research. Heuristics can be beneficial
in time-critical environments characterized by sparse data and
computational capability limitations (Todd & Gigerenzer,
2012). The naturalistic decision-making (NDM) approach
focuses on expert intuition’s effectiveness in real-world situa-
tions bounded by limited unreliable data, computational intrac-
tability, and time limits. NDM models such as
recognition-primed decision-making (RPD) explain this effec-
tiveness by cue recognition for assessing emerging situations
from prior experience and simulation of courses of action
based on prior feedback on decision validity (Klein, 1993).
Leadership is critical for crisis management (Bundy et al.,
2017) during project execution, and effective response under
time pressure emphasizes expert intuition. AI/ML may aid
project management information systems (PMIS) to recognize
emergent issues and support collaborative responses from
experts during execution.

However, FID requires forecasting outcomes in planning
settings rather than recognizing emerging outcomes in time-
critical contexts with sparse information. For megaproject plan-
ning, high complexity and lengthy time-horizons can lead to
high-impact practically unforeseeable outcomes. The feedback
experts “receive from their failures in long-term judgments is
delayed, sparse, and ambiguous” (Kahneman & Klein, 2009,
p. 523), and principal-agent issues are significant, adversely
affecting expert forecasting. In the context of forecasting for
FID, the limitations of heuristics are significant.

We established and demonstrated methods to correct fore-
casts and reduce uncertainty, building on inside view base-
lines by correcting them. The theoretical foundation and its
validation allowed us to find the place for ML in conjunction
with expert judgment, balancing benefits from both. The ben-
efits of inside view heuristics, discussed by Gigerenzer and
Brighton (2011) and Klein (1993), were present in data inter-
pretation and feature selection; ML models trained on selected

features and outside view distributional data discussed by
Kahneman and Tversky (1979) and Flyvbjerg (2006) deter-
mined project-specific uplift curves. Ecologically valid
project features, trained and weighted on outcomes, can
attain the benefits of robust heuristics that correspond to
their environment discussed by Todd and Gigerenzer
(2000). ML application was based on evidence that the
same uplift does not apply to every reference class project
for a given risk percentile. Our ML model corrected RCF
uplifts by learning the relationship between project features
and performance outcomes, helped by the chosen features’
environmental validity. Our methods can ameliorate principal-
agent issues, correct biases, and reduce overruns in project
outcome data over time. This work can be substantiated and
expanded as better data become available, and several
approaches are outlined here.

The significance of our results can be seen from the substan-
tial costs and delays represented by predicted overruns.
Furthermore, the performance forecasting models can be used
to manage project features to minimize the potential for over-
runs. Project features can be optimized using structured
methods such as the complexity assessment tool described by
Maylor et al. (2013) and by improving front-end development;
the ML methods outlined here will provide quantitative feed-
back on overrun risk mitigation.

Potential Limitations of This Work

Models approximate real-world systems and possess inherent
limitations. The future is mutable, and correlations between
factors could change, affecting weights and relationships
learned by models. Post-FID changes to contractors or scope
will affect project-feature coding. Cost and schedule can be
affected by macroeconomic and commodity cycles.
Predictions are constrained by available distributional data
and collection accuracy. The limited number of offshore pro-
jects is an upper limit, and many project’s actual costs can be
unreliable or unavailable. These limitations resulted in several
approximations to dates, budgets, and costs during data collec-
tion. Furthermore, better projects with more readily available
data due to outcome reporting bias may be overrepresented
compared to problematic ones. Projects professing successful
goal attainment can mask overrun costs borne by contractors,
as on the Asgard B project in the North Sea (Upstream,
2000). However, rapid growth and advances in digitally
enabled project delivery (Whyte, 2019) could lead to exponen-
tial growth in performance data reliability and quantity.

General Limitations and Recommendations

Human behavior can lead to nonoptimal adjustments to uplifted
forecasts, such as work expansion to allotted capacity,
Parkinson’s Law (Parkinson, 1955) and procrastination, or
Students’ Syndrome (Goldratt, 1997). Principal-agent issues
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can also result in nonoptimal adjustments, a criticism that has
been directed at RCF (Themsen, 2019).

However, such criticism is essentially directed at zow rather
than whether RCF should be applied, and there is little reason
not to welcome better means of quantifying underperformance
risk. It would benefit companies, shareholders, and stakehold-
ers, including societies, given the cost and impact of these pro-
jects. The use of uplifts should be in the context of
principal-agent issues in an industry, as discussed by
Flyvbjerg and Cowi (2004); they can be hidden or used with
a fever chart controlling their expenditure.

As Taleb (2008) avers, while true planning is impossible,
planning should be done while accounting for limitations.
Detailed planning or ML cannot quantify all project risks;
strict uncertainty, outcomes with unknown probabilities, and
unknown unknowns, are absent from distributional data.
Complexity can cause unknown emergent outcomes and
chaos. Outliers are very significant to megaproject forecasting
but individually unpredictable due to unforeseeable interaction
among emergent issues. Outliers in distributional data or
“gray swans” (Taleb, 2008, p. 213) have extremely low prob-
abilities of reoccurring the same way. However, they can
stand in for future unknown unknowns. Nonoptimal decisions
can be satisfactory given temporal, informational, and compu-
tational limits when adapted to their environment; this is
termed “satisficing” (Simon, 1956, p. 129). Our goals were
to extend the reach of satisficing in planning complex pro-
jects. Decisions are made in the face of uncertainty, which
we have attempted to reduce.

Future Work

This work provides a framework for integrating RCF with ML
and can lead to further research on methods and applications.
Application to other megaproject classes looks promising:
infrastructure and software development projects show similar
biases and fat-tailed outcome distributions; the rapidly
growing offshore floating wind sector with limited prior pro-
jects has similarities to offshore O&G. This, and the limitations
imposed on ML models by unavailable or unreliable project
data, strongly substantiate the requirement for rigorous cross-
industry project accounting standards and practices, such as
the IASB and FASB rules for reporting in firms; project gover-
nance would benefit immensely. More accurate data collection
and de-biasing of reporting can lead to significant improve-
ments in forecasting accuracy.

There is further potential for optimizing the performance of
our models. Furthermore, project features not in our models can
be incorporated, and more accurate data can be utilized. The
random number generated PDF showed great potential for
approximating overrun distributions, especially for new
sectors with few previous projects, such as offshore wind.
Much data were obtained on the performance weightage of
theory-coded features from our trained models, offering
several promising avenues of inquiry.
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